
NASA Technical Memorandum 110352

Calculation of Three-Dimensional (3-D)
Internal Flow by Means of the Velocity-
Vorticity Formulation on a Staggered Grid

Paul M. Stremel

May 1995

  

National Aeronautics and
Space Administration



NASA Technical Memorandum 110352

Calculation of Three-Dimensional (3-D)
Internal Flow by Means of the Velocity-
Vorticity Formulation on a Staggered Grid

Paul M. Stremel, Ames Research Center, Moffett Field, California

May 1995

  

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, CA 94035-1000



iii

NOMENCLATURE

  

r

a1,2,3 unit vectors in transformed space

h1,2,3 vector length in transformed space

l reference length

n nondimensional time index

r radius

Re Reynolds number, U∞ l/ν

t time

u velocity component in x-direction

u1,2,3 transformed velocity component

v velocity component in y-direction

w velocity component in z-direction

x Cartesian coordinate

y Cartesian coordinate

z Cartesian coordinate

θ angular displacement

ν kinematic viscosity

ξ1,2,3 coordinate in transformed space

ω vorticity

ω1,2,3 vorticity components in transformed space

Subscripts

( )∞ value at upper plate
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Superscripts

( )' dimensional quantity

( )
→

vector quantity

( )* quantity at first fractional step

( )** quantity at second fractional step

( )n quantity at nth time step

( )n+1 quantity at (n + 1)th time step



CALCULATION OF THREE-DIMENSIONAL (3-D) INTERNAL FLOW BY
MEANS OF THE VELOCITY-VORTICITY FORMULATION ON A

STAGGERED GRID

Paul M. Stremel

Ames Research Center

SUMMARY

A method has been developed to accurately compute the viscous flow in three-dimensional (3-D)
enclosures. This method is the 3-D extension of a two-dimensional (2-D) method developed for the
calculation of flow over airfoils. The 2-D method has been tested extensively and has been shown to
accurately reproduce experimental results. As in the 2-D method, the 3-D method provides for the
non-iterative solution of the incompressible Navier–Stokes equations by means of a fully coupled
implicit technique. The solution is calculated on a body fitted computational mesh incorporating a
staggered grid methodology. In the staggered grid method, the three components of vorticity are
defined at the centers of the computational cell sides, while the velocity components are defined as
normal vectors at the centers of the computational cell faces. The staggered grid orientation provides
for the accurate definition of the vorticity components at the vorticity locations, the divergence of
vorticity at the mesh cell nodes and the conservation of mass at the mesh cell centers. The solution is
obtained by utilizing a fractional step solution technique in the three coordinate directions. The
boundary conditions for the vorticity and velocity are calculated implicitly as part of the solution.
The method provides for the non-iterative solution of the flow field and satisfies the conservation of
mass and divergence of vorticity to machine zero at each time step. To test the method, the calcula-
tion of simple driven cavity flows have been computed. The driven cavity flow is defined as the flow
in an enclosure driven by a moving upper plate at the top of the enclosure. To demonstrate the ability
of the method to predict the flow in arbitrary cavities, results will be shown for both cubic and
curved cavities.

INTRODUCTION

The numerical prediction of vortex-dominated flow is paramount to the understanding of the
flow about aircraft configurations. This is especially important to the design analysis of rotorcraft
when considering download, the force exerted on the vehicle due to the rotor-wake interaction with
the fuselage components. Download limits helicopter performance in hover and is a significant
problem in the design of tilt-rotor configurations, where the lifting wing is immersed in the rotor
wake. Because the download caused by the rotor wake severely limits the hover performance of tilt-
rotor configurations, a method for accurately predicting tilt-rotor download would provide for the
design of configurations with improved hover performance.
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A two-dimensional (2-D) method has previously been developed to calculate the flow about bluff
bodies, reference 1. Results have also been obtained for airfoils with and without a deflected flap at
–90 deg incidence, reference 2. Additionally, the effect of Reynolds number and turbulence have
been computed for the XV-15 wing airfoil with and without a deflected flap, reference 3. The results
of reference 3 indicate that the flow field solution is highly Reynolds number and turbulence depen-
dent. Excellent correlation between prediction and test were obtained when matching the test
Reynolds number and incorporating the Baldwin/Barth turbulence model, reference 4. This correla-
tion provides confidence in using the current method as a tool to further investigate the reduction of
drag on airfoils at –90 deg incidence.

The validated 2-D computational method has also been applied to calculate the influence of
upper- or lower- surface fences on airfoil aerodynamics, reference 5. In particular, the flow about an
XV-15 airfoil with a 30 percent trailing edge flap deflected 60 deg at –90 deg incidence was con-
sidered. The flow is calculated for a Reynolds number of one million while modeling turbulent flow.
The results of that investigation indicate that significant reductions in drag are obtained with the
inclusion of fences. In particular, a 35 percent drag reduction, with respect to the basic airfoil value,
was achieved for a lower-surface fence located at the airfoil leading edge.

The ability of the 2-D method to accurately compute the flow about a complex geometry normal
to the free-stream flow and the direct extension of the method to 3-D analysis are the basis for this
paper. In order to predict download, a method is required that can, not only, compute the flow about
complex 3-D bodies, but also can accurately predict the wing-base pressure, which has been illusive.
The 3-D extension of the 2-D analysis promises to be such a method.

Prior to solving the 3-D external flow problem a simpler problem is addressed to validate the
governing equations and the solution technique. The flow in a driven cavity is considered to test the
method. The development of the method is presented in the next section followed by the application
of the method to the driven cavity problem.

PROBLEM FORMULATION

The flow field is modeled by the velocity/vorticity form of the unsteady, incompressible Navier–
Stokes equations. The nondimensional governing equations in Cartesian coordinates are written for
the continuity equation,

  

r

∇ •
r

u = 0 (1)

and for the vorticity transport equation,

  

r

ωt +
r

∇ ×
r

ω × r

u( ) = ∇2 r

ω / Re (2)

with ∇ 2 = ∂2( )/∂ × 2 + ∂2( )/∂y2 + ∂2( )/∂z2, where (x,y,z) are the Cartesian coordinates, Re is the
Reynolds number, and t is the time. The vorticity, ω, is defined by
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r

ω =
r

∇ × r

u (3)

The nondimensional variables are written

x = ′x / l, y = ′y / l, z = ′z / l

u = ′u / U∞ ,v = ′v / U∞ ,w = ′w / U∞

ω = ′ω / U∞ / l( ),t = ′t / l / U∞( ), Re = U∞l / ν

where

u, v, and w are the Cartesian components of the velocity, and

l = reference length

Re = Reynolds number based on l

U∞ = free-stream velocity

ν = kinematic viscosity

When the Cartesian equations are transformed into generalized-orthogonal-curvalinear coordi-
nates, the governing equations become as follows (see ref. 6 for details).

For the continuity equation,

  

r

∇ •
r

u = 1

h1h2h3

∂ h2h3u1( )
∂ξ1

+
∂ h1h3u2( )

∂ξ2

+
∂ h1h2u3( )

∂ξ3









 = 0 (4)

and for the definition of vorticity,

  

r

ω = 1

h2h3

∂ h3u3( )
∂ξ2

−
∂ h2u2( )

∂ξ3


















r

a1 + 1

h1h3

∂ h1u1( )
∂ξ3

−
∂ h3u3( )

∂ξ1


















r

a2 + 1

h1h2

∂ h2u2( )
∂ξ1

−
∂ h1u1( )

∂ξ2


















r

a3

(5)

where (ξ1,ξ2,ξ3) are the transformed coordinates, u1, u2, and u3 are the orthogonal velocity compo-
nents in the transformed coordinates, and h1, h2, and h3 are the vector lengths,

h1 = ∂x

∂ξ1







2

+ ∂y

∂ξ1







2

+ ∂z

∂ξ1







2











1

2
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h2 = ∂x

∂ξ2







2

+ ∂y

∂ξ2







2

+ ∂z

∂ξ2







2











1

2

h3 = ∂x

∂ξ3







2

+ ∂y

∂ξ3







2

+ ∂z

∂ξ3
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The vorticity transport equation, equation 2, can be rewritten as:

  

r

ωt + r

u •
r

∇
r

ω −
r

ω •
r

∇r

u = ∇2 r

ω / Re (6)

This form offers some unique issues regarding the dot product on the left-hand side and the
Laplacian operator on the right-hand side of the equation. Because both the gradient and the
Laplacian operator act on a vector quantity, the dependence of the vector components and the unit
vectors must be considered. The expression for 

  

r

u •
r

∇
r

ω  becomes:

  

r

u • ∇
r

ω

= r

u • ∇ω1 + ω2

h1h2
u1

∂h1

∂ξ2
− u2

∂h2

∂ξ1







+ ω3

h1h3
u1

∂h1

∂ξ3
− u3

∂h3

∂ξ1


















r

a1

  

+ r

u • ∇ω2 + ω1

h1h2
u2

∂h2

∂ξ1
− u1

∂h1

∂ξ2







+ ω3

h2h3
u2

∂h2

∂ξ3
− u3

∂h3

∂ξ2


















r

a2

  

+ r

u • ∇ω3 + ω1

h1h3
u3

∂h3

∂ξ1
− u1

∂h1

∂ξ3







+ ω2

h2h3
u3

∂h3

∂ξ2
− u2

∂h2

∂ξ3


















r

a3

Where, 
  

∇( ) = 1

h1

∂( )
∂ξ1

r

a1 + 1

h2

∂( )1
∂ξ2

r

a2 + 1

h3

∂( )
∂ξ3

r

a3








 . Details can be found in Appendix 1.

The expression for the Laplacian of the vorticity vector on the right-hand side of equation 6 is
extremely long and can also be found in Appendix 1.

The boundary conditions for the transformed governing equations at the enclosure surface are
calculated from the no-slip condition as

u1 = u2 = u3 = 0 (7)

except at the upper surface of the enclosure at which the velocity is specified. The surface vorticity is
calculated from equation 5.
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The flow is started impulsively. Therefore, at t = 0, the velocity on the upper surface of the
enclosure is set to the prescribed boundary condition and the velocity everywhere inside the enclo-
sure is set equal to zero. The vorticity on the upper surface of the enclosure is calculated from
equation 5 and is set equal to zero everywhere else in the enclosure. The surface vorticity is calcu-
lated implicitly as part of the solution after the impulsive start. The computation is advanced until a
desired time has been reached or until the flow has demonstrated stable periodic flow within the
enclosure.

NUMERICAL METHOD

The solution is obtained by solving the finite-difference representations of the governing equa-
tions on a computational mesh. The grid is body-fitted to the interior of the 3-D enclosure.

In the staggered-grid method, the flow-field variables are not defined at the mesh nodes only.
Rather, the components of vorticity are defined at the mid-points of the mesh cell sides, and the
orthogonal flow-field velocity components are defined at the centers of the mesh cell faces. The vor-
ticity and velocity components on the staggered grid are depicted in figure 1. The staggered-grid ori-
entation of the variables provides for the conservation of vorticity at the mesh nodes and the solution
of the continuity equation at the mesh cell centroids. The vorticity and flow-field velocities are cal-
culated by a fully coupled implicit technique on the staggered mesh. The coupled method solves for
the vorticity and velocity components by means of a block-tridiagonal inversion for fractional steps.
A representation of the fractional step method is presented in Appendix 2. Each fractional step repre-
sents a computational sweep in one of the coordinate directions. These computational sweeps are
depicted in figures 2–4.

In figure 2, the computational sweep for coordinate ξ1 is shown. The governing equations for the
vorticity and velocity components are selected to take into account the spatial derivatives in ξ1. With
this in mind, the conservation of vorticity is solved for ω1. The vorticity components ω2 and ω3 are
solved using the second and third components of the vorticity transport equation, equation 6. The
continuity equation, equation 4, is solved for u1, and the velocity components u2 and u3 are solved
from the third and second components of vorticity, respectively, in equation 5. This allows for the ξ1
derivatives of u2 and u3 to appear in the governing equation for each velocity component. Then
for u2,

ω3 = 1

h1h2

∂ h2u2( )
∂ξ1

−
∂ h1u1( )

∂ξ2







and for u3,

ω2 = 1

h1h3

∂ h1u1( )
∂ξ3

−
∂ h3u3( )

∂ξ1
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In figure 3, the computational sweep for coordinate ξ2 is shown. The governing equations for the
vorticity and velocity components are selected to take into account the spatial derivatives in ξ2. Now,
the conservation of vorticity is solved for ω2. The vorticity components ω1 and ω3 are solved using
the first and third components of the vorticity transport equation, equation 6. The continuity equa-
tion, equation 4, is solved for u2, and the velocity components u1 and u3 are solved from the third
and first components of vorticity, respectively, in equation 5. This allows for the ξ2 derivatives of u1
and u3 to appear in the governing equation for each velocity component. Then for u1,

ω3 = 1

h1h2

∂ h2u2( )
∂ξ1

−
∂ h1u1( )

∂ξ2







and for u3,

ω1 = 1

h2h3

∂ h3u3( )
∂ξ2

−
∂ h2u2( )

∂ξ3







In figure 4, the computational sweep for coordinate ξ3 is shown. The governing equations for the
vorticity and velocity components are selected to take into account the spatial derivatives in ξ3. Now,
the conservation of vorticity is solved for ω3. The vorticity components ω1 and ω2 are solved using
the first and second components of the vorticity transport equation, equation 6. The continuity equa-
tion, equation 4, is solved for u3, and the velocity components u1 and u2 are solved from the second
and first components of vorticity, respectively, in equation 5. This allows for the ξ2 derivatives of u1
and u3 to appear in the governing equation for each velocity component. Then for u1,

ω2 = 1

h1h3

∂ h1u1( )
∂ξ3

−
∂ h3u3( )

∂ξ1







and for u2,

ω1 = 1

h2h3

∂ h3u3( )
∂ξ2

−
∂ h2u2( )

∂ξ3







The boundary conditions are calculated implicitly as part of the solution. After the inversion of
these block-tridiagonal systems, the solution for the present time-step is obtained. The solution is not
iterated and the continuity equation is satisfied to machine zero. The solution is then advanced by
updating the flow-field variables and solving the flow for the next time-step. The solution is termi-
nated at a desired time or after sufficient time has elapsed for demonstration of the flow-field
periodicity.
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RESULTS

In order to test the method, the solution to the driven cavity problem was computed. All solutions
were computed for a Reynolds number of 100. This geometry was considered to test the methodol-
ogy and not to analyze the flow of driven cavities. The current formulation provides for the solution
of 3-D, incompressible flow for arbitrary geometries and not constrained to Cartesian coordinates.
The driven cavity problem is applied for a cubic cavity with constant coordinate spacing and with a
cosine spacing, which clusters the grid lines at the boundaries. The results are compared to those
computed in reference 8 for a cubic cavity of constant grid spacing in Cartesian coordinates. A
curved cavity is also considered, again with a constant coordinate spacing and a cosine spacing for
the grid coordinates. The cross-flow geometry for the four grids considered are shown in figures 5–8.
The 3-D grids are constructed by stacking the cross-flow geometry. The velocity of the upper surface
of the cavity is specified and held constant. The solution is started impulsively from rest and is con-
tinued until a steady solution is reached.

Cubic Cavity – Constant Grid Spacing

The driven cavity flow for the geometry of figure 5 is computed. For this solution, x is synony-
mous with ξ1, y with ξ2,  and z with ξ3. The upper plate, the x-y plane at maximum z, is held at a
constant velocity, U∞ = 1.0. The vorticity contours at the mid-plane locations are shown in figure 9.
The ξ1 vorticity, shown in figure 9(a), demonstrates the symmetric nature of the flow field with
opposite vortices at the center of the plane and flow up the walls at y = 0 and y = 1.0. Additionally,
secondary vortices form on the bottom of the cavity and on the upper plate. The ξ2 vorticity, shown
in figure 9(b), develops similar to the vorticity for a 2-D solution of the driven cavity problem. The
ξ3 vorticity, shown in figure 9(c), demonstrates the symmetric nature of the cavity flow with sec-
ondary vortices on the upstream wall. The vorticity contours of figure 9 are similar to the vorticity
contours presented in reference 8.

Cubic Cavity – Cosine Grid Spacing

The driven cavity flow for the geometry of figure 6 is computed. This is similar to the previous
solution. However with the increased grid resolution at the wall, additional flow features in the form
of secondary vortices are resolved. Here again, x is synonymous with ξ1, y with ξ2,  and z with ξ3 and
the upper plate is held at a constant velocity, U∞ = 1.0. The vorticity contours at the mid-plane loca-
tions are shown in figure 10. The ξ1 vorticity, shown in figure 10(a), demonstrates the symmetric
nature of the flow field with opposite vortices at the center of the plane and flow up the walls at
y = 0 and y = 1.0 and the enhanced flow features, such as, secondary vortices on the bottom of the
cavity and on the upper plate. The ξ2 vorticity, shown in figure 10(b), develops similar to the
vorticity in the 2-D solution of the driven cavity problem and the previous vorticity shown in
figure 9(b). Vortices in the lower corners of the cavity are clearly predicted. The ξ3 vorticity, shown
in figure 10(c), demonstrates the symmetric nature of the cavity flow with secondary vortices on the
upstream and downstream wall. The vorticity contours in figure 10 are similar to those of figure 9
and the vorticity contours presented in reference 8.
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Curved Cavity – Constant Grid Spacing

The driven cavity flow for the geometry of figure 7 is computed. For this solution, r, or radius, is
synonymous with ξ1, y with ξ2,  and θ with ξ3. The upper plate, the x-y plane at maximum z, is held
at a constant velocity, U∞ = 1.0, see figure 7. The vorticity contours at the mid-plane locations are
shown in figure 11. The ξ1 vorticity, shown in figure 11(a), again demonstrates the symmetric nature
of the flow field with opposite vortices at the center of the plane and flow up the walls at y = 0 and
y = 1.0. Secondary vortices shown for the cubic cavity, figure 9(a), are not present here owing to the
curvature and increased height of the cavity, both of which tend to stagnate the flow at the bottom of
the cavity. The ξ2 vorticity, shown in figure 11(b), develops similarly to the vorticity shown in
figure 9(b) for the cubic cavity. However, the vorticity develops further down the downstream wall
due to the curvature of the cavity. The ξ3 vorticity, shown in figure 11(c), demonstrates the symmet-
ric nature of the cavity flow with secondary vortices on the upstream wall.

Curved Cavity – Cosine Grid Spacing

The driven cavity flow for the geometry of figure 8 is computed. Here r, or radius, is synony-
mous with ξ1, y with ξ2,  and θ with ξ3. The upper plate, the x-y plane at maximum z, is held at a
constant velocity, U∞ = 1.0. The vorticity contours at the mid-plane locations are shown in figure 12.
The ξ1 vorticity, shown in figure 12(a), again demonstrates the symmetric nature of the flow field
with opposite vortices at the center of the plane and flow up the walls at y = 0 and y = 1.0. The sec-
ondary vortex structure shown on the upper plate is better defined, when compared to that of the
constant grid spacing, figure 11(a). The ξ2 vorticity, shown in figure 12(b), develops similar to the
vorticity shown in figure 11(b). However, corner vortices can be seen in the bottom of the cavity and
increased rollup of the primary vortex in the center of the cavity. The ξ3 vorticity, shown in
figure 12(c), demonstrates the symmetric nature of the cavity flow with secondary vortices on the
upstream and downstream walls.

CONCLUSIONS

A method has been developed to calculate accurately the viscous flow in 3-D enclosures. The
method provides for the non-iterative solution of the incompressible Navier–Stokes equations by
means of a fully coupled implicit technique. To demonstrate the method, the calculation of simple
driven cavity flows has been considered. The driven cavity flow is defined as the flow in an enclo-
sure driven by a moving upper plate at the top of the enclosure. The intent was not to present a study
of cavity flows, but to determine the ability of the method to predict arbitrary internal 3-D flow.
Therefore, results were shown for both cubic and curved cavities with constant and varying mesh
spacing.

The predicted vorticity contours for a cubic cavity with constant mesh spacing were in close
agreement with the contours shown in reference 8. The method predicted the emergence of the pri-
mary vortices, as well as, secondary vortices. Similar results were shown for a cubic cavity with a
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cosine spacing for the grid points. The cosine spacing of the grid points concentrates the mesh points
near the boundaries. With the cosine spacing, the primary and secondary vortices were enhanced.

The predicted vorticity contours for a curved cavity with constant mesh spacing were similar to
those for the cubic cavity, and were again enhanced when the solution was computed on a curved
cavity with a cosine distribution for the grid points.

The comparison of the present results with other computations for the cubic cavity flow and the
comparison of the cubic cavity flow with the curved cavity flow provide credibility to the methodol-
ogy. Considerable work is required to extend the method to external flows, to incorporate turbulence
models and to apply the method to realistic problems.



APPENDIX 1

This Appendix presents the development of the dot-product, divergence, and LaPlacian operator of a
vector quantity and are integral to the development of the generalized governing equations in three-
dimensional (3-D) space.

The expressions in this Appendix are written for a general vector quantity,

  

r

F = F1
r

a1 + +F2
r

a2 + F3
r

a3

The dot product of a vector with the gradient of another vector is written,

  

r

n • ∇
r

F = r

n • ∇ F1
r

a1 + F1
r

a2 + F3
r

a3( )
or,

  

r

n • ∇
r

F = r

n • ∇F1
r

a1 + r

n • ∇F2
r

a2 + r

n • ∇F3
r

a3 + F1
r

n • ∇r

a1( ) + F2
r

n • ∇r

a2( ) + F3
r

n • ∇r

a3( )
The general expressions for the dot product and the gradient are, respectively,

  

∇ •
r

F = 1

h1h2h3

∂ h2h3F1( )
∂ξ1

+
∂ h1h3F2( )

∂ξ2
+

∂ h1h2F3( )
∂ξ3











and,

  

∇F1 = 1

h1

∂F1

∂ξ1

r

a1 + 1

h2

∂F1

∂ξ2

r

a2 + 1

h3

∂F1

∂ξ3

r

a3










Using the following expressions for the derivatives of the unit vectors,

  

∂ r

a1

∂ξ1
= − 1

h2

∂h1

∂ξ2

r

a2 − 1

h3

∂h1

∂ξ3

r

a3,
∂ r

a1

∂ξ2
= 1

h1

∂h2

∂ξ1

r

a2,
∂ r

a1

∂ξ3
= 1

h1

∂h3

∂ξ1

r

a3

∂ r

a2

∂ξ1
= 1

h2

∂h1

∂ξ2

r

a1,
∂ r

a2

∂ξ2
= − 1

h1

∂h2

∂ξ1

r

a1 − 1

h3

∂h2

∂ξ3

r

a3,
∂ r

a2

∂ξ3
= 1

h2

∂h3

∂ξ2

r

a3

∂ r

a3

∂ξ1
= 1

h3

∂h1

∂ξ3

r

a1,
∂ r

a3

∂ξ2
= 1

h3

∂h2

∂ξ3

r

a2,
∂ r

a3

∂ξ3
= − 1

h1

∂h3

∂ξ1

r

a1 − 1

h2

∂h3

∂ξ2

r

a2



the dot product of the unit vectors become,

  

r

n • ∇r

a1 = n1

h1

∂ r

a1

∂ξ1
+ n2

h2

∂ r

a1

∂ξ2
+ n3

h3

∂ r

a1

∂ξ3











or,

  

r

n • ∇a1 = n1

h1
− 1

h2

∂h1

∂ξ2

r

a2 − 1

h3

∂h1

∂ξ3

r

a3






+ n2

h2

1

h1

∂h2

∂ξ1

r

a2 + n3

h3

1

h1

∂h3

∂ξ1

r

a3













and,

  

r

n • ∇r

a2 = n1

h1

∂ r

a2

∂ξ1
+ n2

h2

∂ r

a2

∂ξ2
+ n3

h3

∂ r

a2

∂ξ3











or,

  

r

n • ∇r

a2 = n1

h1

1

h2

∂h1

∂ξ2

r

a1 + n2

h2
− 1

h1

∂h2

∂ξ1

r

a1 − 1

h3

∂h2

∂ξ3

r

a3






+ n3

h3

1

h2

∂h3

∂ξ2

r

a3













and,

  

r

n • ∇r

a3 = n1

h1

∂ r

a3

∂ξ1
+ n2

h2

∂ r

a3

∂ξ2
+ n3

h3

∂ r

a3

∂ξ3











or,

  

r

n • ∇r

a3 = n1

h1

1

h3

∂h1

∂ξ3

r

a1 + n2

h2

1

h3

∂h2

∂ξ3

r

a2 + n3

h3
− 1

h1

∂h3

∂ξ1

r

a1 − 1

h2

∂h3

∂ξ2

r

a2


















Then the dot product becomes,

  

r

n • ∇
r

F

= r

n • ∇F1
r

a1 + r

n • ∇F2
r

a2 + r

n • ∇F3
r

a3

  

+F1
n1

h1
− 1

h2

∂h1

∂ξ2

r

a2 − 1

h3

∂h1

∂ξ3

r

a3






+ n2

h2

1

h1

∂h2

∂ξ1

r

a2 + n3

h3
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or,
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The Laplacian of a vector is as follows.

The Laplacian of a scalar is written,
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For which the Laplacian for a vector quantity is written,
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After evaluation of the above terms using the product rule, incorporating the derivatives of the unit
vectors presented above and considerable rearranging, the Laplacian of a vector quantity is written,

  

∇2 r

F

= 1

h1h2h3

∂
∂ξ1

h2h3

h1

∂F1

∂ξ1







+ ∂
∂ξ2

h1h3

h2

∂F1

∂ξ2







+ ∂
∂ξ3

h1h2

h3

∂F1

∂ξ3







− h2

h1h3
F1

∂h3

∂ξ1







2

− h3

h1h2
F1

∂h2

∂ξ1







2

− h3

h1h2
F1

∂h1

∂ξ2







2

− h2

h1h3
F1

∂h1

∂ξ3







2





















r

a1

  

+ 1

h1h2h3
2

h3

h1

∂h1

∂ξ2

∂F2

∂ξ1
+ F2

∂
∂ξ1

h3

h1

∂h1

∂ξ2
















r

a1

  

+ 1

h1h2h3
2

h2

h1

∂h1

∂ξ3

∂F3

∂ξ1
+ F3

∂
∂ξ1

h2

h1

∂h1

∂ξ3


















r

a1

  

+ 1

h1h2h3
−2

h3

h2

∂h2

∂ξ1

∂F2

∂ξ2
− F2

∂
∂ξ2

h3

h2

∂h2

∂ξ1
















r

a1

  

− 1

h1h2h3

1

h3
F2

∂h3

∂ξ2

∂h3

∂ξ1







+ 1

h2
F3

∂h2

∂ξ3

∂h2

∂ξ1


















r

a1

  

+ 1

h1h2h3
−2

h2

h3

∂h3

∂ξ1

∂F3

∂ξ3
− F3

∂
∂ξ3

h2

h3

∂h3

∂ξ1


















r

a1



  

+ 1

h1h2h3

∂
∂ξ1

h2h3

h1

∂F2

∂ξ1







+ ∂
∂ξ2

h1h3

h2

∂F2

∂ξ2







+ ∂
∂ξ3

h1h2

h3

∂F2

∂ξ3







− h1

h2h3
F2

∂h3

∂ξ2







2

− h3

h1h2
F2

∂h2

∂ξ1







2

− h1

h2h3
F2

∂h2

∂ξ3







2

− h3

h1h2
F2

∂h1

∂ξ2







2





















r

a2

  

+ 1

h1h2h3
−2

h3

h1

∂h1

∂ξ2

∂F1

∂ξ1
− F1

∂
∂ξ1

h3

h1

∂h1

∂ξ2
















r

a2

  

+ 1

h1h2h3
2

h3

h2

∂h2

∂ξ1

∂F1

∂ξ2
+ F1

∂
∂ξ2

h3

h2

∂h2

∂ξ1
















r

a2

  

+ 1

h1h2h3
2

h1

h2

∂h2

∂ξ3

∂F3

∂ξ2
+ F3

∂
∂ξ2

h1

h2

∂h2

∂ξ3


















r

a2

  

− 1

h1h2h3

1

h3
F1

∂h3

∂ξ1

∂h3

∂ξ2







+ 1

h1
F3

∂h1

∂ξ3

∂h1

∂ξ2


















r

a2

  

+ 1

h1h2h3
−2

h1

h3

∂h3

∂ξ2

∂F3

∂ξ3
− F3

∂
∂ξ3

h1

h3

∂h3

∂ξ2


















r

a2

  

+ 1

h1h2h3

∂
∂ξ1

h2h3

h1

∂F3

∂ξ1







+ ∂
∂ξ2

h1h3

h2

∂F3

∂ξ2







+ ∂
∂ξ3

h1h2

h3

∂F3

∂ξ3







− h2

h1h3
F3

∂h3

∂ξ1







2

− h1

h2h3
F3

∂h3

∂ξ2







2

− h1

h2h3
F3

∂h2

∂ξ3







2

− h2

h1h3
F3

∂h1

∂ξ3







2





















r

a3

  

+ 1

h1h2h3
−2

h2

h1

∂h1

∂ξ3

∂F1

∂ξ1
− F1

∂
∂ξ1

h2

h1

∂h1

∂ξ3


















r

a3

  

− 1

h1h2h3

1

h2
F1

∂h2

∂ξ1

∂h2

∂ξ3







+ 1

h1
F2

∂h1

∂ξ2

∂h1

∂ξ3


















r

a3

  

+ 1

h1h2h3
−2

h1

h2

∂h2

∂ξ3

∂F2

∂ξ2
− F2

∂
∂ξ2

h1

h2

∂h2

∂ξ3

























r

a3



  

+ 1

h1h2h3
2

h2

h3

∂h3

∂ξ1

∂F1

∂ξ3
+ F1

∂
∂ξ3

h2

h3

∂h3

∂ξ1

























r

a3

  

+ 1

h1h2h3
2

h1

h3

∂h3

∂ξ2

∂F2

∂ξ3
+ F2

∂
∂ξ3

h1

h3

∂h3

∂ξ2


















r

a3



APPENDIX 2

This Appendix presents the development of the fractional-step method of reference 7 for three-
dimensions. Consider the Cartesian form of the vorticity transport equation in three dimensions,
without considering the vortex-stretching terms. The equation is written,
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The fractional step method is written , for the three fractional steps, as
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for the y-coordinate step,
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and for the z-coordinate step,
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Figure 4. Schematic for staggered-grid formulation, ξ3 solution sweep.
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Figure 5. Geometry for cubic cavity, constant spacing, 17 × 17 × 17.
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Figure 6. Geometry for cubic cavity, cosine spacing, 17 × 17 × 17.



0.0

–0.5

z  –1.0

–1.5

–2.0
0.0 0.5 1.0

x
1.5 2.0

U∞ = 1.0

Figure 7. Geometry for curved cavity, constant spacing, 17 × 17 × 17.
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Figure 8. Geometry for curved cavity, cosine spacing, 17 × 17 × 17.
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Figure 9. Vorticity contours for cubic cavity, constant spacing, mid-plane locations, 17 × 17 × 17.
a) ξ1 vorticity contours, b) ξ2 vorticity contours, c) ξ3 vorticity contours.
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Figure 10. Vorticity contours for cubic cavity, cosine spacing, mid-plane locations,
17 × 17 × 17. a) ξ1 vorticity contours, b) ξ2 vorticity contours, c) ξ3 vorticity contours.
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Figure 11. Vorticity contours for curved cavity, constant spacing, mid-plane locations,
17 × 17 × 17. a) ξ1 vorticity contours, b) ξ2 vorticity contours, c) ξ3 vorticity contours.
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Figure 12. Vorticity contours for curved cavity, cosine spacing, mid-plane locations,
17 × 17 × 17. a) ξ1 vorticity contours, b) ξ2 vorticity contours, c) ξ3 vorticity contours.




